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Abstran Tunnelling is examined f” the point ofview ofanalytic continuation of Lagrangian 
manifolds. This enables an inuinslcally multidimensional approach to many problems. We 
illustrate the idem by computing energy spliltings behveen wngment ton in a number of 
integrable systems. The examples include an integnble but non-separable system which cannot 
be solved by reduction to one-dimensional systems. The calculations can all be viewed in a 
geomeuical way thar does not make explicit use of separation of coordinates. 

1. Introduction 

While tunnelling is very naturally incorporated into WKB analyses of one-dimensional 
systems [ I ,  21, the understanding of tunnelling processes in many dimensions (see Gutzwiller 
131 and references therein) is much less complete. Part of the difficulty of generalizing one- 
dimensional calculations to higher dimensions is that the one-dimensional theory is usually 
presented in such a way that it relies heavily on the fact that one is typically interested in 
finding eigensolutions of Hamiltonians of the kinetic-plus-potential type-so the Schrodinger 
equation is a second-order linear ordinary differential equation. We adopt a point of view 
here that avoids such explicit assumptions about the Schrodinger equations and as a result 
it is much easier to generalize to multidimensional calculations. 

The essential point is that WKB approximations always arise from the identification 
of a quantum object-a wavefunction, propagator or Green function for example-with 
a Lagrangian manifold in phase space [3]. By focusing attention on the Lagrangian 
manifold rather than the Schrlidinger equation itself, one can calculate tunnelling effects 
in a unified way that is not qualitatively different for Schrodinger equations of different 
order, or even different dimension. In simple WKB calculations, the Lagrangian manifold is 
an n-dimensional submanifold of an-dimensional phase spacetunnelling corrections are 
then included by complexifying the Lagrangian manifold and phase space, and allowing 
complex phase-space points into the reconstruction of the quantum object. 

The multidimensional problems that have thus far been solved by WKB techniques 
[3] are: (i) quantization of integrable systems, (ii) scattering and Cui) approximation of 
propagators and Green’s functions, and subsequent calculation of trace formulae. In this 
paper we concentrate on (i) as a source of examples. ’Ln integrable systems the eigenstates 
are constructed from invariant tori-uantization conditions arise from demanding that the 
wavefunction remain single-valued after encircling all closed loops on the manifold. To 
quantize the system with tunnelling corrections we regard the first integrals as functions of 
complex variables and construct the complexified manifold as a level set of these complex 
functions-the complexified manifold has 2n real dimensions whereas the real manifold is 
n-dimensional. One then similarly demands single-valuedness of the wavefunction after 
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traversing all closed loops on this higher-dimensional manifold. Viewing the procedure in 
this way has the advantage that one comes closer to treating the problem in a canonically 
invariant way. The complex Lagrangian manifold and its homological structure are 
geometrical invariants. 

We review the one-dimensional theory in section 2 and present it in such a way that 
the dependence on dimension is minimized. We then give the generalization to many 
dimensions in section 3. The theory is not substantively different from the one-dimensional 
theory, but is presented in such a way that intrinsically multidimensional calculations are 
possible. 

In real w m  calculations the changes that occur in the wavefunction over a closed loop 
can be expressed in a canonically invariant way. The same must also be true of the complex 
calculation but this has not been shown explicitly. There is a step missing which corresponds 
roughly to the proof by Arnold 141 in the real case that the Maslov index for a closed loop 
is a canonical invariant. It is possible, however. to calculate the wavefunction changes in a 
specific set of coordinates and we do this in this paper for numerous examples. We present 
some simple rules that are valid under the special circumstance that all of the important 
structure of the complex Lagrangian manifold can be understood by taking a slice through 
it along real configuration space. All of the examples presented in this paper fall into this 
class. The rules amount to a correction of the usual Maslov shift that depends on the extent 
to which exponentially growing solutions are present on the forbidden side of a caustic. 

The simplest case where tunnelling plays a role in integrable systems is that there are 
two symmetric tori confined to distinct wells in a potential. A two-fold degeneracy in 
EBK levels is then broken when tunnelling effects are included. We present a series of 
examples of this sort and in each case the essential shucture is of a common type-when 
one examines a real-position slice through the complex manifold one finds that the two real 
tori are connected by one or more complex ton in the forbidden region. Singlevaluedness 
of the wavefunction around all closed loops on the real and complex tori yields the energy 
splitting. Note that this picture is independent of whether or not the system is separable and 
so we can solve the problem in an intrinsically multidimensional way, without resorting to 
reduction to one-dimensional systems. We illustrate this by solving a particular integrable, 
but non-separable, problem. The calculation for this system is qualitatively the same as for 
separable systems-and in each case the energy splitting scales with ft as fiexp(-K/fi), 
where iK is a complex action. The tunnelling results here apply to a different regime to 
those of Wilkinson [5,6] where the continuations of the real tori are assumed to meet along 
a surface of just one complex dimension rather than matching smoothly to the same complex 
manifold-there the splittings are calculated to scale as fi3/2exp(-K/7i). 

Calculations of splittings for non-separable systems have also been discussed by Meyer 
et al [7,8], where emphasis is placed on the relationship of the approximation to complex 
trajectories. By contrast, here the emphasis is on the global structure of the associated 
Lagrangian manifolds. We believe that this approach is preferable for an intrinsic and 
(eventually) coordinate-free solution of the problem. 

Let us summarize the paper. In section 2 we review one-dimensional tunnelling theory, 
partly to establish notation, and partly to set up for generalization to the multidimensional 
case. In section 3 we discuss the multidimensional case and give the correction to the 
Maslov shift that accounts for tunnelling. We proceed to illustrate the theory with a number 
of integrable systems: in section 4 we start by solving the one-dimensional double well, in 
section 5 a separable two-dimensional well, in section 6 a non-separable two-dimensional 
well, and in section 7 the problem of @, which is separable. Section 6 also contains a 
brief overview of the solution of integrable problems in general. 
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2. Review of tunnelling in one dimension 

The semiclassical theory of tunnelling is very well understood for one-dimensional problems 
of the kinetic-plus-potential type. Since the theory we will present for multidimensional 
system will be a simple generalization of the one-dimensional method, it is useful to 
begin by briefly outlining this onedimensional theory. See Berry and Mount [l] for a 
good elementary discussion and for further references. Here we are interested only in the 
lowest-order expansions in f i  for each solution of the Schrbdinger equation, but complete 
expansions have also been investigated for quartic oscillators [9, IO]. 

We begin by writing the WKB approximation for a simple one-dimensional Hamiltonian 
of the type 

H = p2/2 + V ( q )  (1) 
where we might typically take V ( q )  to be a double well potential. Now, the Schrodmger 
equation for this Hamiltonian in position representation is a second-order linear ODE and 
has two independent solutions. The WKB approximation for these solutions is obtained by 
solving for the two branches of momentum as a function of position, 

p*(q) = w" (2) 
integrating to get the action, 

9 

W q )  = lo Pi(q')dq' 

and constructing the two approximate solutions as follows: 

(3) 

@&) = pi(q)-'12exp -&(q) . (4) [F. 1 
A general solution to the differential equation is locally expressed as a linear combination 
of these two solutions, 

@(q) = a+@t(q) +a-*&) (5 )  
where a+ and a- are constants determined by the boundary conditions. 

The solution of (5)  is valid except at turning points, where p+(q) = 0, the solutions 
@*(q) diverge and the WKB approximation is invalid. Away from these regions, it might 
be expected that the coefficients a* should remain constant, since this is what is required 
to satisfy the Schrodinger equation. This is not entirely true however. If we regard q as a 
complex variable and extend the solution (5)  to the complex plane, it turns out it is necessary 
to allow the coefficients to change discontinuously along lines in the complex plane (of real 
codimension 1) in order that a globally single-valued solution be obtained. These lines are 
called Stokes lines and emanate from the turning points. Though these lines are intimately 
connected with the turning points, it is not necessary to actually be close to a turning point 
to cross a Stokes line and have the coefficients change. This inability to predict changes 
in a+ purely from local conditions is the main source of difficulty in calculating tunnelling 
effects in an elegant way. 

A complete explanation of the reasoning behind the existence of Stokes lines and a 
detailed explanation of their structure can be found in [1,2]. Here we will briefly outline 
their structure and computation. To understand the Stokes lines, it is necessary to examine 
the behaviour of a solution in the neighbourhood of a turning point. Let us choose 
qo in (3) to be the (possibly complex) turning point. The actions &(q) will typically 
have non-zero imaginary parts and therefore when they are substituted into (4) one of 

' 
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the fundamental solutions will be exponentially larger than the other (the ratio is of order 
exp(-ls(S+ -S-)l/f i)).  The smaller solution is called subdominant and the larger dominant. 
The Stokes lines are defined as the set where the dominant solution is maximally dominant, 
i.e. where S+ - S- is pure imaginary. Through a local expansion of p ( q )  around the 
turning point it is possible to see that the Stokes lines consist of three lines emerging from 
the turning point at angles of 120". 

On a Stokes line, a change in the coefficient of the subdominant solution will have the 
least disruptive effect on the overall solution (5) because it is there that the subdominant 
solution is smallest in a relative sense. It is found that in order for the solution to be single 
valued around the turning point, it is necessary, when passing through a Stokes line, to 
change the subdominant coefficient by an amount proportional to the dominant coefficient 
as follows: 

(6) 
where *&) is subdominant to *&). The coefficient c is referred to as the Stokes constant, 
and it's value depends on phase conventions for the amplitudes p+(q)-"*, the direction of 
crossing of the Stokes line etc. In the appendix we outline a set of phase conventions for 
which c = 1 always. Other standard phase conventions [I] give c = f i .  

A complete solution of the problem, including tunnelling effects, is obtained by globally 
matching the coefficients a+ over the complex plane and choosing the energy and coefficients 
in such a way that @(q) + 0 as 141 + 00 along the real axis. 

This is an overview of the most common case of tunnelling in one dimension and 
complete discussion of the solution of typical problems can be found in, far example, Berry 
and Mount [l]. It is useful now to generalize the discussion to one-dimensional problems 
where the Hamiltonian can be an arbitrary function of q and p ,  not necessarily of the kinetic- 
plus-potential form shown in (1). To do this,  and to generalize further to many-dimensional 
problems, it is good to view the process in a way that minimizes the dependence on a 
specific choice of representation. 

We see that there is one local independent solution Qa(q) of the Schrodinger equation 
for each branch p.(q) of the implicit equation H ( q ,  p )  = E .  An appropriate generalization 
of (4) to arbitrary Hamiltonians is 

a, + aDL + cap 

So we can associate one independent solution with each branch of the Riemann sheet 
structure defined by H ( q ,  p )  = E. Therefore the solutions can be regarded as defining a 
single-valued function on the Riemann sheet manifold, albeit with discontinuous changes 
at Stokes lines (and along branch wts of the amplitude, as discussed in the appendix). 
Note that the Riemann sheet manifold defined by H ( q ,  p )  = E can be regarded as an 
intrinsic subset of complexified phase space and is independent of choice of coordinates. 
The quantization conditions come from traversing all topologically distinct loops on this 
manifold and demanding that the solution retum to its original value at the end of each loop. 
This statement is also independent of representation, since the topology of the Riemann sheet 
is independent of which coordinates the manifold is projected onto. 

We illustrate this invariant structure in figure 1 for the case of a quartic potential 
V ( q )  = -q2/2 + q4/4,  where E lies below the local maximum. There are four turning 
points and we choose the branch cuts of &2(E - V ) )  to run between pairs of turning 
points as in figure l(a). By identifying the sheets along the branch cuts we get the global 
structure shown in figure l(b). While the intermediate construction of the two Riemann 
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Figure 1. Here is the Riemann sheet for the double well potential. In figure l(a) we show two 
separale sheets with branch cuts connecting pairs of turning points. Mer gluing the sheet along 
the identified edges (a, b, c, 6) one gets the struclure in figure I(b) (it is nezessu-y to tnrn one 
of the sheets upside down to glue along the proper edges). We show the three homologically 
distinct loops Ct, Cz and CT of the manifold io figure l(b). 

sheets in figure l(a) is particular to the q-representation, the structure shown in figure I(b) 
is obtained no matter which representation is used. There are three independent loops, CI, 
Cz and C,, also shown in figure l(b). Demanding single-valuedness after looping around 
C1 and Cz gives approximate EBK quantization of the two wells, and singlevaluedness 
around CT completes the computation of tunnelling corrections. 

The representation dependence of the calculation comes from the details of actually 
computing changes to the solutions while traversing the loops. Changes in the solutions 
come from crossing Stokes lineotheir positions, as well as the way the wavefunction 
changes at them, depends intimately on the representation. The situation is analogous to the 
quantization of ton in multidimensional integrable systems, where the position and nature 
of each Maslov index shift depends on the representation, even though the total shift at the 
end of a closed loop is representation-independent 14,111. Similarly, we expect that in the 
present case the total change in the coefficient of a fundamental solution over a closed loop 
can be expressed in a representation-independent way. Unfortunately, the non-local nature 
of the changes in this case makes it much much more difficult to analyse than in the real case. 

Turning points in the general case are points at which branches of p ( q )  coalesce-not 
necessarily at p ( q )  = &--and the generic case is that just two branches, p*(q)  and p p ( q )  
say, coalesce. Stokes lines radiate outwards along the relevent two branches, defined by the 
condition that S, - Sp be imaginary (the integration constant qa in the analogue of (3) is 
taken to be the turning point). On crossing a Stokes line the subdominant solution, p&) 
say, changes as before according to (6). 

There is a fundamental difference between the general case and the kinetic-plus-potential 
case, however. As pointed out by 3erk et al [12], Stokes lines can originate not only at 
turning points, but also at the intersection of Stokes lines that connect different pairs of 
branches (this cannot happen for (1) because there is only one pair of branches). Suppose 

I), and I), represent three distinct branches and that two Stokes lines, Sa, connecting 
the (or, p )  branches, and S,, connecting the (@, y )  branches, intersect at qo. Suppose 
further that @c is dominant over @p and @, is dominant over @, on their respective Stokes 
lines. Using just the rules outlined so far, one gets different results after passing through 
both Stokes lines, depending on the order in which they are crossed. Suppose one starts 



4914 S C Creagh 

with solution @m, passes through first Sup, and then Spy-then the solution emerges as 
@m + c=pl/ss + cupcpy !by, where cap and cay are Stokes constants. If, on the other hand, one 
crosses Spy first and then Sop, the solution emerges as The resolution of this 
inconsistency lies in the fact that one must insert another Stokes line connecting the (CY, y )  
branches, starting at qo and bisecting the sector in which Spy is crossed before &D. The 
new Stokes line makes up for the missing term in that case. Full details of the calculation 
of these Stokes lines and the corresponding Stokes constants are given in [12]. In this paper 
we deal with examples for which this kind of Stokes line is not important, but in general 
problems these Stokes lines will be needed for a complete analysis. 

So this represents the structure of tunnelling calculations in one dimension. We are now 
ready to tackle higher-dimensional cases. 

+ 

3. Generalization to many dimensions 

In this section we examine an obvious generalization of the discussion in one dimension to 
more dimensions. 

Let us start by assuming that some state in a multidimensional problem is determined 
by a Lagrangian manifold A. If we were to ignore tunnelling effects, then A would be 
taken to be a real n-dimensional submanifold of real 2n-dimensional phase space. In the 
example of the previous section this real Lagrangian manifold would have been the real 
level set H ( q ,  p )  = E .  The wavefunction is reconstructed by summing as follows over 
local solutions pa(& determined by branches CY of the manifold that correspond to points 
in real phase space, 

= [Pe(q)l'/2exp -se(q) . (8 )  K 1 
Here p , ( q )  is a probability density on A, determined by the particular problem, and S,(q) 
is an action obtained by integrating the momentum over A in an obvious generalization of 
(3). The Lagrangian condition states that the action should not change under continuous 
deformation of integration path (for more detail see [13]). In many dimensions the wm 
approximation breaks down at caustics where two branches of the manifold coalesce and 
det(ap./aq)-' = 0. These local solutions are patched together to form a global solution 
by including discrete phase shifts at caustics determined by the appropriate Maslov indices. 

We now point out that it is not difficult to combine this picture with the one-dimensional 
techniques of the previous section to give a procedure for calculating tunnelling effects in 
many dimensions-in cases where the quantum state is known to be determined by a 
Lagrangian manifold (not all states have an obvious Lagrangian manifold associated with 
them-for example, eigenstates of chaotic systems). The solutions I(Iu(q) are analytically 
continued to complex q. as in the previous section. There are obvious analogues of the 
Stokes lines (in this case Stokes surfaces), on which the coefficents multiplying the local 
solutions change discontinuously and global matching of these coefficients, along with the 
demand that the solution decay at infinity, gives quantization conditions as before. The 
problem of course is that in practice the topology of these higher-dimensional structures 
will be much more difficult to analyse, but in principle this can be achieved. 

As before it is desirable to view the procedure in as invariant a manner as possible. 
Rather than analytically continuing the solutions directly, let us thiik of continuing A and 
the density p .  and then reconstructing the continued wavefunction from these complexified 
objects. Analytical continuation of A gives a surface of 2n real dimensions embedded 
in a complex phase space of 4n real dimensions-and a combination of the Lagrangian 
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property and Cauchy's theorem guarantees that integrals of p . dq along h are invariant 
under continuous deformation of path. Continuation of h is easy if the manifold is known 
to be the level surface of a set of n analytic functions F,(q,p), as is the case for integrable 
systems-one merely extends the functions to depend on complex variables q and p and 
constructs the level sets in complex phase space. Analytic continuation of the wavefunction 
is achieved simply by regarding the components of q as complex variables in (3), with one 
local solution being associated with each branch a of the complexified h over q. 

To analyse the structure around a caustic and determine Stokes constants etc, we use 
normal coordinates to reduce the problem locally to a onedimensional one. Suppose 
C is a caustic surface, obtained when h is projected onto configuration space in some 
neighbourhood. We choose configuration space coordinates (41 , . . . , 4.) such that C is 
specified locally by 41 = 0. In fact it is possible to choose coordinates (q, p )  on phase 
space in such a way that h is specified by the conditions 

2 

(9) 

as, for example, in appendix 12 of Arnold [13]. In these coordinates the wavefunction 
decouples into a product 

P1 = -41 
p i = O  i = 2 ,  ..., n 

~ ~ ( 4 1 . 4 2 .  ..., 4")=xu(41)~~u(42... . .4n) (10) 
where xa(ql)  has a turning point at q1 = 0 and &(qz, . . . , 4.) has no singular structure. 
Changes in coefficients of the solutions are then determined entirely by the behaviour of the 
one-dimensional functions xn(ql) and are independent of the coordinates (42, . . . ,qa).  The 
coefficients of the solutions change when qt is on a Stokes line of x.(ql) and (42, . . . , q.) are 
arbitrary-and the changes are determined from x.Q) as outlined in the previous section. 

From here we can reformulate the conditions for Stokes surfaces in a way that they are 
independent of the construction of normal coordinates. The Stokes surfaces have 2n - 1 real 
dimensions and are of real codimension 1 on the 2n-dimensional complexified manifold A. 
These Stokes surfaces radiate from caustic surfaces that are determined by the condition 
det(ap,/aq)-l = h a u s t i c  surfaces are of real codimension 2 on A. If the Stokes surface 
corresponds to a caustic where two branches IY and f i  coalesce, then it is determined by the 
condition that 

(11) 
where the actions are obtained by integrating to q from a point on the caustic. In normal 
coordinates this happens to coincide with the conditions that 41 lie on a Stokes line of x.(ql) 
and that (q2, . . . ,q.) are arbitrary. The coefficients of the local solutions now change, as 
usual, according to (6). The Stokes constants could be determined by calculating in normal 
coordinates and using one-dimensional procedures. One could also calculate them from first 
principles by encircling a caustic in complex configuration space and demanding that the 
overall wavefunction be single-valued. Full details are presented in the appendix. 

The preceding discussion deals only with the case of Stokes surfaces emanating from 
simple caustics where just one eigenvalue of the ma@ix (ap,/aq)-l passes through zero. 
In a generic calculation it will be possible to circumvent places where more than one 
eigenvalue passes through zero, so this restriction is not a real problem. See [14], however, 
for a discussion of Stokes surface structure in the neighbourhood of a degenerate point. 
More serious is the fact that it does not cover the case of Stokes surfaces arising from the 
intersection of two other Stokes surfaces as in the discussion at the end of the previous 
section. While in principle this case could also be dealt with by simple generalization of 
the one-dimensional discussion we will not do so here. 

Re [s&) - SpCd] = 0 
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Figure 2. We show schermtidy a real-q slice through A near a caustic. The branches on the 
red side are shown in full curves and are labelled N and P according to whether the derivative is 
negative or positive. n t e  complex branches on the forbidden side are shown by broken curves 
and are Iaklled D and S for dominant and subdominant. The associafed amplitudes w listed 
in (IZ)-(lS). 

To keep things simple, we will restrict ourselves to problems where the only important 
Stokes surfaces are those emanating from caustic surfaces that contain real configuration 
space points. In thii w e  it is necessary only to analyse the wavefunction in a small 
neighbourhood of real configuration space. The essential structure of A - a t  least the structure 
that is important for the determination of +(q) for real q--can then be understood by taking 
a slice through A corresponding to real q. This fact simplifies significantly the task of 
determining the topology of the system, and this is important because in many dimensions 
it becomes rapidly very difficult to get a complete understanding of the structure. 

We will now write down simple rules for determining the relative amplitudes, phase 
factors etc, of the local solutions in a neighbourhood of a simple fold caustic at real values 
of q. These rules will amount to a simple modification of the usual Maslov phase shift that 
depends on the degree to which the non-decaying solution is present on the forbidden side 
of the caustic. We show schematically a slice through h at real q in figure 2 for the case 
of two degees of freedom. On one side of the caustic there are two real solutions for each 
q. represented in figure 2 by full curves-we label these branches P and N according to 
whether aql/apl > 0 or aql/apl c 0, respectively. These derivatives are understood to 
be taken while (42, . . . , qa) are held fixed. On the forbidden side of the caustic there are 
two complex solutions represented by broken curves in figure %we label these by D and 
S, respectively, according to whether the appropriate branch is dominant or subdominant. 

We will next specify the relative amplitudes a, of each of the fundamental solutions 
+,(q). First it is necessary to specify in detail the phase conventions in (8). We choose the 
symbol [pa(q)]-'/' to represent the analytic function that coincides with Ipa(q)I-112 when 
q is real. Of course, as one moves around the caustic in complex configuration space, this 
identification becomes ill defined as the branches exchange identity-but is well defined 
sufficiently close to real configuration space. Next, we will suppose that the path of the 
integral defining &(q)  starts on a given point in A-so Se(@ defines a function that is 
single-valued on A in a neighbourhood of the caustic and becomes multi-valued only after 
projection to configuration space. With these conventions, the amplitudes are 

as = 1 (12) 
a~ = T (13) 
aN = ein14 (I - tir) ( 14) 
ap = e-jn14 (1  + $T) . (13 

These equations are derived in the appendix using a simple extension of one-dimensional 
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arguments. We have the freedom to choose a common normalization factor, and this has 
been done in such a way that as = 1. Once this is done, then a0 is left undetermined by a 
purely local analysis and we equate this to the temporarily unknown variable T, which we 
will refer to as the tunnelling parameter. T must later be determined by a global matching 
of the solutions over the whole of A. Once these two choices have been made the remaining 
two coefficients aN and ap are determined completely, as in (14) and (15). 

These amplitudes are valid for real q. Real configuration space is contained in a Stokes 
surface on the forbidden side, so as changes discontinuously when q becomes complex. If 
one moves off real con6guration space in the direction where one ends up on the N branch 
after encircling the caustic, the change is as + 1 - iT/2. On the other side as + 1 + iT/2. 
As should be expected though, the precise assignation of a value to as in this region has 
little effect on the final outcome at the level of approximation used here. 

A complete solution of the tunnelling problem is obtained by matching the solutions 
&(q) to form a globally singlevalued function on A. Equations (12)-(15) tell us how to 
compute the discrete amplitude changes that occur when we pass through a caustic to switch 
from one branch to another. For example, when passing from branch N to branch P, we 
must multiply the amplitude by the ratio 

This represents a simple modification of the Maslov phase shift e-*/z. The tunnelling 
parameter T multiplies the exponentially growing solution on the forbidden side and must 
therefore be small-so the modification represents a small correction to the Maslov phase 
shift that vanishes when T vanishes. In the particular case where it is is possible to let 
q approach real infinity along the dominant branch, then we must choose T = 0, or else 
?(q) fails to satisfy the boundary conditions. "hen there is no correction to the Maslov 
shift. There can be cases, however, where the dominant branch is effectively bounded in 
real configuration space and then T can be non-zero. 

One can similarly compute multipliers Maw,,, for the transition between any other pair 
of branches. In each case the multiplier depends on the variable T. Each fold caustic has 
associated with it its own T. To compute the T's  and quantize the system, one considers 
every independent closed loop C in A and demands that the total change in the amplitude, 
including a phase factor for the total action, reduces to unity as follows: 

"-B 
along c 

One gets one independent equation for each homologically independent loop and one 
tunnelling parameter for each fold caustic. Those tunnelling parameters that connect 
dominant solutions along which one can approach q -+ 00 can be set to zero, as discussed 
above, but the rest form a set of unknowns which are determined by solving the simultaneous 
set of equations obtained by applying (17) to every homologically independent loop. In 
addition one obtains any quantization conditions on the energy E by solving this set of 
equations. 

We have concentrated here on the case of crossings of real caustics because the rules 
implied by (12)-(15) are easy to state and can be used to solve all the problems considered 
in this paper. The same ideas apply, however, when structure away from real q is important. 
Then multipliers come at crossings of Stokes surfaces-and the multipliers associated with 
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the three Stokes surfaces coming from a caustic will all depend on a tunnelling parameter 
that is fixed for each caustic. The rules are less easy to state for the general case, however, 
because there are no obvious phase conventions for the amplitudes of the solutions ?,be (see 
the appendix). 

It is instructive to see how the process described above compares with the example of 
standard real EBK quantization of tori in n-dimensional integrable systems. Here one gets n 
equations of the form (17) from then independent loops C, on the torus. Ignoring tunnelling 
effects, all the tunnelling parameters can be set to zero and the multipliers reduce to standard 
Maslov phase shifts. Equation (17) then reduces to the EBK quantization conditions 

(18) 

The total Maslov index pa represents the sum of individual Maslov phase shifts from each 
caustic that C. crosses. Like the product of multipliers in (17). it is not, at first sight, 
representation-independent. There is a deep result by Arnold [13], however, that shows that 
ha actually is independent of representation when computed over a closed loop-he shows 
that pa is a winding number in the space of Lagrangian planes. See. also results specific to 
tori in Littlejohn and Robbins [I 11. 

Likewise it should be possible to show that n M,,p is representation-independent for 
closed loops even when tunnelling parameters are included. Unfortunately, this has not been 
done explicitly-the non-local nature of the amplitude changes makes the calculation more 
difficult in the fully complex case. Every other aspect of the quantization-the topology of 
A as Expressed by its homologically independent loops and the actions of those loops-is 
representation-independent. It 'must' be true that the product of multipliers is also, and, 
besides making the calculation more satisfying &om an aesthetic point of view, a fully 
representation-independent calculation will be more easily implemented in practice. For 
now, though, we are forced to compute JJ M,+ using the representation-dependent rules 
discussed above. 

1 
2;; is p .  dq = (n. + :p.)fi a = 1,. . . , n .  

Now we will illustrate this procedure with a number of examples. 

4. Example: double well in one dimension 

We will first illustrate the notation and procedure on the canonical example of a one- 
dimensional double well oscillator. For the sake of concreteness we can take the potential 
to be the quartic, 

and consider negative energies, so there is a splitting in energy levels due to tunnelling 
between the left and right wells. 

The Lagrangian manifold determining the states here is the level set p z / 2 +  V ( q )  = E ,  
whose full structure as a complex manifold has been discussed in section 2 and illustrated in 
figure 1. Let us illustrate how the essential topology of the full complex manifold is captured 
by a slice through it corresponding to real q-this procedure is all that will be available to 
us in multidimensional calculations. The real slice is shown in figure 3. There are two real 
I-tori corresponding to real dynamics within each of the two wells and corresponding to the 
loops C1 and C, in figure I@). Connecting them at the inner turning points is a complex 
I-torus, shown by a broken circle, and this corresponds to the loop C, of figure I@). 
Also shown as broken curves are complex solutions running off to infinity from the outside 
turning points of CI and Cz. 
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Figure 3. A real-q slice thmugh the energy shell E = 0.15 for the potential in (19). Complex 
solutions are shown by brokn curves and real solutions by full curves. 

The tunnelling parameters associated with the outside caustics vanish according to the 
general discussion in the previous section. Let us associate tunnelling parameters E and 
E with the inner turning points of CI and Cz, respectively. Going once around each of CI 
and Cz in the clockwise direction, one gets for (17). 

where S is the common action of real loops CI and C2. The factor exp[iS/h] is as in (17). 
The first factor of represents the Maslov shift for the outer caustic and the remaining 
terms represent the modified Maslov shift for the inner caustic. There is one remaining 
independent loop-around CT-and (17) for this is 

exp - K  -TI TZ = 1 (21) 

where iK is the action integral around loop CT. K is a positive real number. Notice in 
figure 3 that if one leaves one turning point along a dominant branch, one approaches the 
other turning point along its subdominant branch. Then the multipliers along C, are simply 
TI and T2, as in (21). 

Equations (20)-(21) represent three independent equations for the three unknowns, F ,  
T2 and E. The solution yields 

K 1 

for the tunnelling parameters (there are two solutions corresponding to odd and even parity) 
and 

- S ( E )  1 = ( E +  $)FI - --T h 
2n 2 K  

then determines the corresponding two energy levels implicitly. To derive these equations 
one uses the fact that Ti, Tz, exp[-K/h] are small. From here one gets the standard result 
for the splitting, A E  = (Ul/r)exp[-K/2hJ, where s is the period. 
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5. Example: double well in two dimensions 

As a second illustrative example we examine the two-dimensional potential, 

(24) 

This is a separable system and can he solved by reduction to two onedimensional systems 
and so is not interesting in its own right. However, this is the simplest possible system on 
which to demonstrate the general multidimensional calculation and the calculation contains 
all the essential features of the completely general case-the semiclassical discussion in this 
section will not make explicit use of the separability of the problem, just the fact that it is 
integrable. 

This system has the two first integrals Hz(x, p z )  and H,(y, p y ) .  obtained by extracting 
the x -  and y-dependent parts of the Hamiltonian, respectively. Quantum states are obtained 
from the Lagrangian manifold defined by specifying the first integrals Hz = Ex and 
Hy = E,. Restricted to real phase space, this level set consists of two disjoint congruent 
tori corresponding to motion restricted to two symmetric wells on either side of the y-axis. 
EBK quantization of these tori yields doubly degenerate levels and this degeneracy is lifted 
when tunnelling effects are included. The tori are box ton-when projected to configuration 
space they fill out rectangles, as shown by the solid tori and shaded rectangles in figure 4. 

The full complex manifold is four-dimensional and embedded in eight-dimensional 
phase space, so obviously a complete representation analogous to figure 1 is out of the 
question. We can, however, make a generalization of figure 3, and, as in the case of the 
onedimensional quartic oscillator, this representation contains all the essential topologi- 
cal information. We solve for p(p) with p real but p allowed to be complex. Except at 
caustics, there are everywhere four branches of p(p). The four solutions are real in the 
shaded regions in figure 4 under the real tori. Everywhere else the solutions are complex. 
The interesting complex solutions are in the rectangle between the two real ton-there the 
solutions form a complex toms as shown by the dashed figure in figure 4. Along these 
branches one cannot approach p -+ 00 without passing through a caustic-so we can asso- 
ciate non-zero tunnelling parameters with caustics connecting onto this region. In all other 

1 2  I 4  I 2  V ( x ,  y) = -zx + a x  + I y  . 

/ 

Figure 4. A d - q  slice through the manifold for the potential in (24). Real smchms are 
shown by full lines and complex by broken lines. The three interesting tori project to rectangles 
in phase space--two red and one mmplex one between them. 
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parts of configuration space it is possible to approach infinity along complex branches, so 
the relevant caustics have zero tunnelling parameters. 

Let us now apply (17) to the topologically distinct loops. First we can encircle the ton 
along loops where (y, pr) vary but (x, px) are held fixed. Here we just get the usual EBK 
quantization of the y-action because there are no non-trivial tunnelling parameters along 
these loops. Moving along the x-direction, however, we get the more interesting loops C,, 
CT and CZ as shown in figure 4. The similarity between the labelling of these three loops 
and those of the previous section is not accidental-quantization of the loops follows exactly 
the calculation of the previous section for the one-dimensional double oscillator. Except 
here the picture going with the calculations is entirely two-dimensional. After following 
the same algebra, the x-action is quantized again according to (21)-(22). 

At the end of this calculation we have simply reproduced the one-dimensional results 
for each separated Hamiltonian. But the important point is that we have not used the 
separability of the system anywhere. If a non-separable but integrable system had the same 
topology the calculation would be just the same. In the next section we will examine a 
non-separable but integrable system, albeit with a slightly different topology. The topology 
described in this section might also have relevence in more general problems, however. 
The essential feature is that there are two real box tori in symmetric wells connected by 
a complex torus in the middle-as if there were three tyres stacked together. This is the 
simplest possible way to connect two symmetric box tori and the structure may exist in 
other applications. 

Another ease is where the system above is perturbed to form a KAM system. Certainly the 
real tori persist under perturbation and it is well known that application of EBK quantization 
to such KAM tori works well. If the complex torus inbetween also persists then the calculation 
would also apply to this system-and here reduction to one-dimensional systems is not an 
option. This question will be the subject of a future publication. 

6. Example: integrable but non-separable double well 

To illustrate the quantization of general integrable systems, we calculate in this section 
splittings in an integrable, but non-separable system. The procedure for general integrable 
systems is as follows. One starts with some discrete number of congruent real tori, which 
are approximately quantized by the EBK quantization conditions (18). One then uses the 
first integrals to compute all branches of p(q)  over real configuration space, including 
complex branches, thereby connecting the distinct real tori across the forbidden regions. 
Some of the complex branches will run to 00, and caustics connecting to these branches 
are assigned zero tunnelling parameters. Some other complex branches will form compact 
structures such as the tunnelling torus in figure 4-each distinct caustic connecting to these 
branches is assigned an initially unknown tunnelling parameter. The tunnelling parameters 
and splittings are then determined by application of 17 to all independent closed loops. This 
procedure only works if the important closed loops of the complex manifold are revealed 
by a real-q slice. More generally, however, it should be possible to deal with complex 
tunnelling routes by projecting to a different plane, such as momentum space. This is 
discussed further at the end of the section. Let us now look at the promised example. 

6.1. The system 

We consider the potential [15-171 
V ( x ,  y) = -8xz + 8x4 - 2yz + y4 + 6x2y2 



4982 S C Creagh 

-1.5 h , ,  , , I , ,  , , I , ,  , , I , ,  , , I , ,  ( .  I , ,  , , , I  
-1.5 -1.0 -0.5 0.0 OS 1.0 1.5 

X 

Figure 5. Contour plot of he potential in (25). There are two wells on either side of the y-axis, 
A h ,  there are WO saddle points on the y-axis and a local maximum a1 the origin. 

This potential is example 3.6 of reference [16]-we have interchanged the x -  and y- 
coordinates and chosen the values K = -2 and E = p = v = A  = 0 for the parameters ap- 
pearing there. A contour plot of the potential is shown in figure 5. There are two symmetric 
wells on either side of the y-axis-as in the previous section there will be congruent tori lo- 
calized within each of these wells and tunnelling will split the degeneracy in EBK levels. The 
potential has local minima of Emin = -2 at ( x ,  y) = ( ? ~ t z - ' / ~ ,  O), saddle points of energy 
E, = -1 at ( x .  y) = (0, A l )  and a local maximum of energy E,, = 0 at ( x ,  y) = (0,O). 

The quantum Hamiltonian has the following first integral [16]: 
I ,= p;  + 2(y4p; + p;y4) + 12x 2 (S 2 2  p,. + p;~2)  : 4(y2p; + P ; ~ ~ )  

-4(xpx + PXX)(Y3P, + P y Y 3 )  + YZP; + U ( x ,  Y) + 12ftzx2 

U ( x ,  y )  = 4y8 - 16y6 + 16y4 + 16xzy6 - 32x2y4 + 16x4y4. (27) 

That is, I is a Hermitian operator that commutes with the Hamiltonian and is functionally 
independent of it in the classical limit The integral is quartic in the momentum-separation 
of coordinates would lead to a first integal quadratic in momentum, so this system is not 
separable. 

Let us restrict ourselves io negative energies, so that the centre of the potential is al- 
ways energetically forbidden. Real tori exist when l is between 0 and 4 ( E  - Emi.)'. As f 
approaches 0 a torus shrinks to a stable periodic orbit that runs along the x-axis through one 
of the minima of the potential. At the other extreme, when I approaches 4 ( E  - E&$ from 
below, a torus shrinks to a stable periodic orbit that intersects the x-axis vertically-moving 
parallel to the y-axis as it passes through a minimum of the potential. When E < E. the tori 
are energetically localized within each well irrespective of I ,  as with the tori in figure 6(a). 
For larger energies they are dynamically localized within a well when I < 4E2 but encircle 
the local maximum completely when I > 4E2 (as with the torus in figure 6(b)). In the case 

(26) 
where the Ofi2) term is specific to the ordering convention and 
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Figure 6. In figure 6(0) we show tnjectories in configuration space on W O  s p W y  localized 
ton, for E = -1 and I = 2, related to each other by reflection in X .  In figure 6(6) we show a 
tONS for E = -4 and I = 5 that is not spatially localized. This one has a symmetric partner 
related to it through time reversal. Figure 6(n) is representative of the case I < 4E2, and 
figure Mb) of I > 4EZ. 

I > 4EZ there are still two degenerate tori but this time the symmetry relating them is time 
reversal not reflection in x-the tori encircle the local maximum in either the clockwise or 
anticlockwise directions-and each of these two tori shrinks to a periodic orbit encircling 
the centre as I approaches 4 ( E  - E,")'. We will deal with the case of spatially localized 
tori here but the same techniques could be applied to the case I > 4EZ by projecting onto 
momentum coordinates instead of configuration coordinates. 
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Figure 7. This is a schematic represenration of the complex structure going with a toms of 
the form of figurc 6(a). We only show the most important tunnelling tori. There ar? also tori 
connecting across the region around the x-axis but these are not os important for tunnelling. 
This figure is meant to be the analogue of figure 4. 

In figure 6(a) we show a typical pair of spatially localized tori-in this particular 
case for E = -1 and I = 2. These two distinct real tori are both contained within one 
complex manifold and we will now pick out the features of the manifold that are relevant 
for tunnelling between them. Everywhere except at caustics there are eight branches of 
the complex manifold over configuration space, however only four of those turn out to be 
important at any given time. We illustrate the parts of the manifold that are important for 
the end result in figure 7, where we show schematically the two real tori, and two complex 
tori connecting the arms of the real tnri. This simple structure, not much different from 
that of the previous section, explains the splittings between quantum states over much of 
this range of ( E .  I )  values. Before describing more complicated tunnelling routes we will 
calculate splittings using just this part of the complex manifold. 

The tori in figure 7 have two actions J, and J s ,  which we will refer to as the long 
and short actions, respectively. The long action J, corresponds to any one of the loops C, 
and C2 in  figure 7. The short action JJ is defined by the loop CO on the left torus or its 
symmetric partner on the right. We will, for now, ignore tunnelling in applying (17) to the 
loop defining the short action and the result is the the EBK quantization condition. 

Js = (ns + ; ) E .  (m 
The Maslov index for the short loop is ps = 2. 
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6.2. The quantization 

'There are five independent loops with which to quantize the long action. Four of the loops 
are obvious-left and right real loops CI and C,, and top and bottom tunnelling loops 
C3 and C,. We introduce four tunnelling parameters, also shown in figure I-TI and T, 
connecting the left and right ton through the top tunnelling torus, and T3 and T4 through 
the bottom tunnelling torus. Quantization of CI and C, yields two equations of the form 

where a, b = 1,4  for CI and a, b = 2 , 3  for Cz. Quantization of C3 and C4 gives two 
equations 

exp -KI  T,T, = 1 (30) [I: 1 
where c , d  = 1,2  for C3 and a, b = 3 ,4  for C,. As in previous sections, iKL is the 
(common) action integral around loops C3 and C4, and Kt is a positive real number. There 
is a fifth homologically independent loop Cs. This loop goes along one branch of the left 
torus, transitions to the right torus through the upper tunnelling toms along the dominant 
branch, passes around the right torus, and back to the left torus along the dominant branch 
of the bottom tunnelling torus. The loops c1-C~ are complete in the sense that any closed 
loop that can be drawn around the long direction in figure I can be expressed as a linear 
combination of them. Quantization of C5 yields 

(31) 
The multipliers here are each of the form aDfaN or aplas in the notation of (l2)-(15). 
Equations (29x31)  represent five independent equations for the five unknowns TI, Tz, T3, 
TA and E .  

6.3. The solution 

Using the fact that the tunnelling parameters are small, equation (29) immediately reduces 
to 

(32) 
h 

ACE) = (ni + ; ) E  - z;;T 

T = TI + T4 = Tz + Tq. 

where 

(33) 
We can use the rest of the quantization equations to solve for the tunnelling parameters, 
giving 

TI = T2 = T3 = T4 = +exp -- . (34) [ :I 
So the splitting in action is AA = (2h/ic)exp[-K,/2h] and the semiclassical prediction 
for the energy splitting is 
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Table 1. Comparison of the exact quantum splitting AE,, with the semiclassical splittings 
AE:;) and AE$' for some quantized tori at h = 0.06. AE$ is the splitting obtained from 
quantization of lhe long action and provides a good approximation to the quantum splitting-the 
splitting A s k '  obtained from quantization of the shon action always represents a negligible 
comaion. 

nr n, E I AE$ A E$ A Eqm 

2 1 -1.3086 0.1735 2.8 x IO-'* 1.033 x IO-* 1,020 x IO-* 
4 1 -1.l601 0.4936 5.3 x 7,187 x IO-' 7.197 x IO-' 
6 I -1.0206 0.9555 3.0 x IO-'' 3.342 x IO-' 3,360 x IOm5 
2 2 -1,0025 0,1584 4.3 x IO-'' 7.755 x 7.721 x IO-' 
4 2 -0.8630 0.4439 4 . 2 ~  3.343 x 3.445 x 
6 2 -0.7350 0.8430 4.4% 9 . 9 2 2 ~  9 . 9 4 2 ~  IW4 
2 3 -0.7126 0,1415 3.7 x 10- 3.508 x 3.709 x IO-' 
4 3 -0.5846 0.3859 3.8x IO-' 1.017 x 1.019~ 

In table 1 we compare this prediction with the exact splittings Eqm obtained from a numerical 
solution of the quantum mechanical problem for some select states. The actions and 
frequencies were computed for tori with E and I given by the exact quantum eigenvalues. 
The agreement is good, even though the quantum numbers chosen are quite modest, so the 
analysis offered here works. 

It is not difficult to include N n n e h g  corrections in the quantization of the short action 
too, but the relevent complex action (K, say) happens to be always larger in magnitude than 
KI and makes little difference to the splitting. For the sake of completeness we give the 
extra correction anyway. If one cuts through the tori along a strip surrounding the x-axis, 
the result is structurally the same as that of an analogous strip in the potential of section 5. 
Quantization gives the same result found there, namely AJs = (h/n)exp[-K,/?.&] and a 
corresponding contribution to the energy splitting, 

hws n [ 21 aH 
A E ~ =  - AJ s -  - -exp -- , 

a J, 

The total splitting is AEsc = AE$ + AE$, but, as seen in table 1, AEIE' always makes a 
negligable contribution to AE,,. 

6.4. General discussion 

The results discussed here indicate that tunnelling properties of integrable systems do not 
differ qualitatively between separable and non-separable systems. We have seen that similar 
calculations are used to predict the tunnelling splittings of this non-separable system and 
of the separable system examined in the previous section. In each case the discussion was 
based on the fact that the congruent tori are both contained within a single complex manifold, 
defined as a level set of the first integrals. Alternatively stated when two congruent tori 
are analytically continued into the forbidden regions and to complex positions, they join 
together to form one smooth manifold. In references [S, 61 splittings were calculated under 
the assumption that the analytically continued tori join in the forbidden region in a different 
way. There it is also assumed that the continuations of the ton meet, but only along surfaces 
of one complex dimension (invariant under complex time dynamics). 

A simple argument shows that generically the continued tori of exactly integrable 
systems either join to form a single smooth manifold or they do not meet at all. We 
give the argument for n dimensions. Then both of the tori and their continuations 
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are simultaneous level sets of the Hamiltonian H and n - 1 additional first integrals 
(A*, . . . , An). If a point p is contained in the intersection of the two manifolds, then the 
implicit function theorem guarantees that the continuations join to make a single smooth 
manifold unless the gradients (dH, dAz, , . . , dA.) are linearly dependent at p .  Linear 
dependence, dH + ax dAz + t .  + a, dA. = 0, represents 2n conditions to be fulfilled, 
corresponding to the 2n dimensions of phase space, with only 2n - 1 free parameters to 
vary-the n- 1 coefficients (a2 . . . , a.) plus another n for the n dimensions of the manifold. 
Therefore it is necessary to vary one (complex) parameter to find ton that intersect non- 
simply. The condition is fulfilled when the level set contains a separatrix. 

One cannot easily use this argument for KAM tori in near-integrable systems, however. 
There, even though p is an analytic function of q for each individual torus, different ton 
are not related to each other analytically-the actions obtained from perturbation theory are 
not analytic functions of (q, p ) .  Therefore one cannot easily construct globally analytic 
functions for which the congruent ton are simultaneous level sets, and the argument above 
does not hold. In [5] numerical evidence was presented which indicated that, in the 
case of near-degeneracy between two non-congruent tori in a KAM system, the continued 
tori do not join in a single manifold in this way. There, however, each torus has a 
completely independent structure, being perturbed by different sets of resonances in each 
case. In the case of symmetric tori the effects of perturbation are the same for both 
ton and it is conceivable that the continuations join simply, possibly in an approximate 
sense. Certainly, as an exactly integrable system is perturbed the tunnelling smcture must 
initially be similar to that presented here. It has been found [IS, 191 in a study of a 
class of quartic oscillators that the initial behaviour of the splitting between congruent tori 
in a perturbed system is consistent with a semiclassical explanation such as that posited 
here, though for larger perturbations coupling to chaotic states makes for a qualitatively 
different prediction for the splittings, with large fluctuations as a function of the perturbation 
parameter. We will investigate the structure of near-integrable systems in this context in a 
future publication. 

The calculation presented here has relied on the fact that the closed loops which connect 
the real ton in the complex manifold can be detected by a slice through real configuration 
space, This is not always the case-as for ton of the type in figure 6(b) for the system 
examined in this section, where the congruent tori cover the same parts of configuration 
space and loops connecting them necessarily go to complex position. We have retained 
the advantage, however, that we do not rely on the Hamiltonian being of the kinetic- 
plus-potential type, and we are therefore free to project onto any Lagrangian plane (for 
example, momentum space) before embarking on the analysis. For example, for the torus 
in figure 6(b), projection onto either of the ( p x ,  y) or ( p x ,  p,.) planes reveals a clean 
tunnelling torus over real projection coordinates and the calculation can proceed as outlined 
in this and the previous sections. 

Even this is not necessary in principle, however-if the loops connecting the real tori 
were not accessible in real coordinates for any projection one would just have to compute 
multipliers from a fully complex Stokes surface analysis-we have made this assumption 
merely to simplify the computation of multipliers and to help identify the relevant topology 
of the complex manifold. In fact, if and when a manifestly invariant interpretation for the 
product of multipliers over a closed loop is available, there will be no practical advantage 
in slicing through with real coordinates once the independent closed loops have been 
determined. (Of course, some sort of dimension-reducing procedure, such as taking a 
two-dimensional slice, would probably be necessary to identify the closed loops in the fist 
place.) 
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7. Example: the case of Hi 

The simplified model of the molecule Hz+ where the single electron moves around two 
fixed protons is another integrable system with a double well. This time the Hamiltonian 
is separable i n  elliptic polar coordinates. The threedimensional problem has already been 
solved in complete detail by Strand and Reinhardt [20] using separation of coordinates- 
including uniform approximations valid for tori that almost touch-so there is no point in 
going into detail here. However, because the system is such an important physical example 
of multidimensional integrable tunnelling, it is  worthwhile explaining the intrinsically 
multidimensional topological structure governing this problem, and its connection with 
previous examples. 

To keep things simple we restrict ourselves to two dimensions. The electron then moves 
in a two-dimensional potential, 

e2 e2 
V ( x , y )  = -- - - 

r~ r2 
(37) 

where rl and r2 are the distances from the electron to protons 1 and 2, which we suppose 
to be at positions ( x ,  y )  = (-a, 0) and ( x ,  y )  = (+a, O), respectively. There exists the 
following first integral [3,20,21]: 

where L ,  and L2 are the angular momenta of the electron about each of the protons, and 
and 82 are the angles it makes with the x-axis at each of them. Real tori exist when I 

lies between 0 and 2ez/a. When, in addition, I < -E, there are two symmetric localized 
tori, shown schematically in figure 8. 

An important part of the structure here is that the real tori have singularities in Cartesian 
coordinates at rl = 0 and rx = 0, and as a result it is difficult to give a fully three- 
dimensional schematic representation of them as we did for previous examples. We just 
show schematically the single tunnelling torus, and a projection onto configuration space 
of the real tori. Each real torus is bounded by an ellipse and a hyperbola, both with foci 
at the positions of the protons. We also show on the projection the paths of the loops 
corresponding to the actions Jell and Jhw. The interesting action for tunnelling is Jell, for 
which the loop traces out in configuration space part of an ellipse with foci at the proton 
positions, as in figure 8. Both of the caustic crossings for this action connect the inner 
tunnelling torus. On the other hand, the loops for Jhyp trace out segments of a hyperbola 
and the only caustic crossings connect complex branches that run off to infinity, and for 
which the tunnelling parameters are therefore zero. 

Quantization of the action Jhyp therefore just gives the EBK conditions without 
corrections. Quantization of Jell in the left and right tori gives 

where TI and Tz are the left and right tunnelling parameters-both Maslov index shifts 
have here been modified in the same way through being connected to the same tunnelling 
torus. Solution for the To’s follows the same route as for the 51 quantization in the previous 
section-the algebra is the same because all the tunnelling parameters are equal, though in 
the previous section they came from two distinct tunnelling tori and here only one. The 
result is the obvious equivalent of (35). 
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Figure 8. The real md tunnelling ton for hvo-dimensional Htt in the regime where I < - E ,  
The real ton are not drawn explicitly but they connect to the hmnelling ton, as the box tori do 
in figure 4. Here, however. the tori Fall into the singularities to give the toral shucture rather 
than having it be obvious from a simple projection. 

As mentioned before, a complete analysis of the semiclassical quantization, including 
numerical comparisons, was performed in [20]. The description here shows how the solution 
falls into the general structure of tunnelling for integrable systems. 

8. Conclusion 

We have shown that tunnelling in integrable systems can be computed in an intrinsically 
multidimensional way, so that it does not rely on separation of coordinates. The solution 
comes from the application of a quantization condition to every homologically independent 
closed loop on the complex manifold that is defined by setting the first integrals to 
constants in complex phase space. In all of the examples presented here-in each case 
tunnelling was between two symmemc wells-the topological structure of the complex 
manifold could be analysed by a simple cut through it corresponding to real position, 
and the essential structure was that ton localized in each well were connected by one 
or more complex ‘tunnelling tori’ in the forbidden region. The essential structure was 
common to both separable and non-separable systems. Quantization of the loops on the real 
ton corresponded to modifications of the usual EBK quantization conditions, in which the 
Maslov indices were augmented by extra phase shifts that depended on unknown tunnelling 
parameters. Quantization of closed loops on the tunnelling tori determined the values of 
the tunnelling parameters and therefore completed the calculation of the corrections to the 

The calculation is almost canonically invariant, but not quite. The complex manifold 
defined by the set of first integrals is a coordinate-invariant object, as is the set of the 
homologically independent loops to which the quantization conditions are applied. The 

EBK conditions. 
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quantization conditions (equation (17)) themselves, though, are not canonically invariant in 
the form discussed here. In equation (17) there appears an action integral over the closed 
loop, which is canonically invariant, and a product of multipliers that generalize the Maslov 
phase shifts at caustics, which is not. It remains an outstanding problem to demonstrate 
the invariance of the product of multipliers-this would represent a generalization of 
the proof by Arnold [4J that the sum of Maslov index shifts over a closed loop is an 
invariant. Invariance is more difficult to prove in the complex case because the multipliers 
are not determined by purely local calculations, as the Maslov indices are in the real 
case. 

A further generalization of the multipliers might generate uniform approximations to 
splittings that are valid when the tunnelling toms has very small action. Such uniform 
approximations are well known in the one-dimensional [l] case and yield splittings that 
are valid through the top of a potential barrier. They have also been applied to the 
problem of Hzt by Strand and Reinhardt [ZO] through separation of coordinates. Here 
the appropriate generalization might be obtained by calculating a multiplier that connects 
both ends of a tunnelling torus at once rather than going through each caustic separately- 
such a calculation would yield a modified correction to the Maslov index. A similar 
modification of the Maslov index was used by Robbins et al [ZZ] to calculate uniform 
approximations to the splittings in the rotational levels of the SF6 molecule using periodic 
orbit theory. 

Finally, we note that a potential application of these results is to the splittings between 
KAM ton in near-integrable systems. It is not obvious that the structure of real ton connected 
by tunnelling tori is preserved under perturbation, however, and numerical evidence by 
Wilkinson [6] indicates that for tunnelling between non-congruent tori the structure is not 
preserved. We will investigate this problem in a forthcoming publication. 
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Appendix 

Here we derive general rules for the computation of Stokes constants and use them to get 
the amplitudes shown in (12H15). 

We start with one dimension, where two branches of the Riemann manifold coalesce 
simply at qo and PO. A shift of coordinates will allow the turning point to be at 
qo = po = O-then, close to the turning point, the momentum of the two branches is 
of the form p2  = p q ,  and the action is S(q) = $p1/2q3fl  when the integration is started 
at q = 0. We show the two Riemann sheets in figure AI,  on which p ( q )  and S ( q )  are 
single-valued. The sheets are identified along the cuts labelled by j and k. 

For a complete specification of the wavefunctions and computation of the Stokes 
constants, it is also necessary to adopt a phase convention for the amplitude. The amplitude 
is of the form 
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Figure A l .  We show the Stokes lines on both of the Riemann sheets for a generic turning 
p o i n t S  for subdominmt and D for subdominant. The sheets are identified along the edges 
labelled by j and k. The coefficena of the wavefunctions ( q . 0 2 .  q) depend on position as 
shown, changing at subdominant Stokes lines. 

where f ( q )  and g(q) are analytic at the turning point. Because A ( q )  - q-Il4, the amplitude 
is double-valued on the two sheets of figure AI, and it is necessary to insert a branch cut. 
Let us decide for the moment on the convention that when passing through the j side of the 
cut the amplitude changes sign-the sign does not change when passing through the other 
side of the cut, labelled by k.  

The Stokes lines are shown by full lines in figure AI, and they are each labelled D and 
S according to whether they are on the dominant or subdominant branch. The coefficients of 
the solutions are denoted by al. a2 and a3 and these change discontinuously at subdominant 
Stokes lines. In figure A1 we indicate that the coefficient a3 changes sign on passing through 
the j cut to account for the sign change in the fundamental solution. We denote the Stokes 
constants by cl, c2 and c) for clockwise crossings of the Stokes lines as in figure AI. The 
Stokes constants relate the different a’s as follows: 

(A2) 
(A3) 
(A41 

These relationships must hold for arbitrary choice of any two of the a’s and this implies 
that the Stoke constants are given by 

(A5) 
There is an asymmetry between the Stokes constants arising from the choice of branch cut 
for the amplitude on the double Riemann sheets. 

This asymmehy can be eliminated by a different convention for the choice of phase of 
the amplitude. All that matters for the Stokes constant is the relative amplitude between the 
subdominant and dominant solution. Given a solution on the subdominant Stokes line, let us 
compute the Stokes constant relative to the dominant solution that is obtained by analytically 
continuing the subdominant solution once around the turning point in the clockwise direction. 
We also compute the Stokes constant with respect to clockwise crossing of the Stokes line. 
We use the same coefficients as in figure AI to label the subdominant solution but the 
dominant solution may now suffer a sign change relative to the coefficients in the figure 
because of the altered phase convention. The Stokes constants then change the coefficients 
according to 

az =ai  + cia3 (A6) 

a2 = a1 + c1a3 

a3 = a2 + czal 
a1 = -a3 + c3a2. 

( C l ,  cz. c3) = (+I ,  -1, + I )  . 
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a3 = a2 - c?a, (A7) 
a1 = -a) -!- cgaz. (A81 

(c I .cZ ,c3)=(+l , t l .+1) .  (A9) 
This is a much more transparent convention-the Stokes constants are all the same and they 
do not depend on a choice of branch cut for the amplitude. 

The rules above can be very simply stated in a slightly generalized way as follows. 

The solution for this system is 

Rule. When passing through a Stokes line, determine the phase of the dominant solu- 
tion by analytically continuing the subdominant solution around the singularity in the same 
direction in which the Stokes line is crossed. The Stokes constant is then c = I .  

For generalization to more dimensions there are two simple ways to apply these results. 
Firstly we can take the above arguments literally for the separated solutions xa(ql )  of 
the normal coordinate decomposition (see equation (10)). Secondly, and perhaps more 
elegantly, we can just reinterpret figure A1 to represent (this time; schematically) the 2n- 
dimensional complex manifold. The plane actually represents the 2n-dimensional manifold, 
the lines (2n - 1)-dimensional Stokes surfaces and the centre a (Zn - Z)-dimensional caustic 
surface. The figure also captures the essential structure in the multidimensional case and 
the calculations are then identical. In either case the multidimensional Stokes constants are 
given by the rule above, except now the word 'singularity' refers to a caustic surface instead 
of a turning point. 

The discussion above works for a caustic in arbitrary position and orientation in complex 
configuration space. A very common case, however, is that the caustic intersects real 
configuration space and one is interested in calculating the wavefunction for real 4. Then 
a more natural phase convention for the amplitudes is to choose them to be real and 
positive. We will now write down the connections between these different real amplitudes 
implied by the Stokes constants above. These formulae amount to a restatement of the 
Langer connection formula [2], but this time applied to Lagrangian manifolds in arbitrary 
dimensions. 

First consider the solution that is purely subdominant on the forbidden side. It might 
lie, for example, on the Stokes surface labelled by the Stokes constant c2 in figure Al .  The 
branch cut would then lie on the allowed side. Let us continue the solution around the 
caustic to the allowed side. On continuing the solution in either direction, one encounters 
only Stokes surfaces on which it is dominant, so its own coefficient does not change-the 
other solution picks up a non-zero coefficient on the Stokes surfaces, however. So both 
solutions are present on the allowed side. Depending on the direction in which one passes 
around the caustic, the initially subdominant solution ends up either as the N branch or the 
P branch (labelled as in section 3). The solution that appears at the Stokes line gives the 
other. The coefficients of the N and P branches are obtained by analytically continuing the 
amplitude A(q) - q-*l4 around the caustic in either direction and then re-expressing it in 
t e r m  of the real positive amplitude IA(q)l.  Expanding in normal coordinates one gets 

This is the same as for the one-dimensional discussion in Dingle [Z]. 
Next consider a solution that is purely dominant on the forbidden side. Now, the 

forbidden side of the caustic at real p is actually on a Stokes surface of the caustic-so 



Tunnelling in multidimensionnl systems 4993 

one has to be careful about the coefficient of the subdominant solution since it undergoes 
a discontinuous change on passing through the Stokes surface. In a careful analysis of the 
change at a Stokes line [Z] it is found that the coefficient on the Stokes line is the average 
of the coefficients on either side. In the conventions of figure A1 and (A2HA4) we have 
that a2 = -a3 and a! = 2a2 = -2a3. Re-expressing the solutions in terms of those with 
real positive amplitudes we get 

IADlexp -S, + fe-"'41A~lexp -S, + iei"'41AP[exp -Sp , ( A l l )  

Superposing (A10) with T times (All) we recover the amplitudes in (12)-(15). 
Notice that the connection formulae used in the calculation on real configuration space 

are not typical in that they relate solutions that lie exactly on Stokes surfaces. One could 
also traverse homological equivalents of the closed loops used in sections 4-7 that lay 
completely in complex phase space and only cross Stokes surfaces transverally-getting 
different but more generic multipliers at Stokes line crossings. The total product of the 
multipliers will be independent of the representative loop, however, and the final results 
will be the same. 

[h 1 [h 1 [: 1 
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